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The Jahn-Teller distortive transition of LaMnO3 is described by a modified three-state Potts model. The
interactions between the three possible orbits depends both on the orbits and their relative orientation on the
lattice. Values of the two exchange parameters which are chosen to give the correct low temperature phase and
the correct value for the transition temperature are shown to be consistent with microscopy theory. The model
predicts a first order transitions and also a value for the entropy above the transition in good agreement with
experiment. The theory with the same parameters also predicts the temperature dependence of the order
parameter of orbital ordering agreeing well with published experimental results. Finally, the type of the
transition is shown to be close to one of the most disordered phases of the generalized Potts model. The short
range order found experimentally above the transition is investigated by this model.
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I. INTRODUCTION

Orbital ordering and Jahn-Teller �JT� distortions are ob-
served in some perovskite-type 3d transition-metal com-
pounds such as the vanadates �e.g., V2O3,1 LiVO3,2 and
LaVO3 �Ref. 3��. cuprates4 �e.g., KCuF3� and derivatives of
the colossal magnetoresistive in the compound LaMnO3,5,6

which is the subject of this paper.
A single electron, or hole, in cubic symmetry will be in a

twofold or threefold degenerate state if it occupies a eg or t2g
orbit. This degeneracy will be lifted at a transition where the
local symmetry is lowered and long range orbital order oc-
curs in the low-temperature phase.7,8 The local orbital order
will be accompanied by local structure distortions because of
a linear coupling between the occupations of the different
orbital states and the lattice.9 This is the JT effect. In a per-
ovskite structure this is a distortion and rotation of the oxy-
gen octahedra where in the lattice structure ABO3 �where A
=rare-earth cation and B=Mn� the B atom is octahedrally
coordinated to the oxygen. The local distortion around one B
ion affects other ions in the crystal because the oxygen ions
are shared between two octahedra. If a large fraction of the
energy of the orbital ordering comes from the energy lower-
ing due to the interaction with the lattice the interaction is
known as a cooperative JT effect.10 There is a linear coupling
between an eg orbital and the E distortion modes of the oc-
tahedron. The coupling may be determined from a classical
harmonic approximation to the lattice dynamics.10

The subject has attracted much interest recently because
of the interplay between the magnetism and the lattice. The
Coulomb repulsion alone which gives rise to magnetic
superexchange3 can also drive orbital order and hence there
has been much efforts to determine the relative importance
of the lattice effects, cooperative JT, and the electronic ener-
gies in driving the transition.

We consider LaMnO3, where Mn3+ has a d4 configuration,
i.e., four electrons in d orbitals. The wave functions dx2−y2

and d3z3−r2 are called eg orbitals, whereas dxy, dyz, and dzx are
called t2g orbitals. The level splitting is shown in Fig. 1�a� in
a cubic crystal and with a tetragonal distortion. The orbital
ordering is shown in Fig. 1�b�. When electrons occupy these

wave functions, the ground state is determined by the semi-
empirical Hund’s rule in LaMnO3 because the exchange en-
ergy is greater than the crystal field energy �CF. Hund’s rule
coupling causes all of the spins of the electrons to be aligned
parallel, that is S=2, where three electrons are in the t2g
orbitals and one electron occupies one of the eg orbitals. The
MnO6 octahedra in the low temperature phase have two
short, two medium, and two long bonds11 while above TJT
the octahedra have six almost equal bondlengths.

This paper develops a model for the temperature depen-
dence of the orbital ordering. There have been several studies

FIG. 1. �a� Splitting of 3d levels in a cubic crystal field with an
additional tetragonal distortion. Electron occupation of the four 3d
electrons in Mn3+ is shown by arrows, �b� the orbital ordering of the
eg states in an octahedral crystal of LaMnO3 at T�TJT. One of the
two bonds of Mn-O-Mn bond in the x-y plane contracts and the
other expands. The La3+ ion in the center of the cell is omitted for
clarity.
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of the effect of temperature in the orbitally ordered phase.
The orbital ground state is well known as a C-type, antifer-
romagnetic in x-y plane and ferromagnetic in z direction,
with long-range ordered, JT distorted, MnO6 octahedra7,8 as
sketched in Fig. 1�b�. The elongated occupied eg orbitals
alternate between pointing along x and y directions, the so-
called orthorhombic structural phase.7,8 Above TJT, the struc-
tural phase is pseudocubic with almost regular MnO6 octa-
hedra. Also above TJT the long-range orbital ordering
disappears. The structure was studied using the thermal
analysis high-resolution neutron-powder diffraction patterns8

and Raman phonons as function of temperature.12 Evidence
has also been presented6 for orbital ordering in LaMnO3
which is based on the splitting of the Mn 4p levels by the
Mn 3d orbital ordering.

LaMnO3 undergoes a structural phase transition8,13 at the
JT temperature TJT=750 K. Murakami et al.6 showed that
the order parameter of orbital ordering as a function of tem-
perature decreases rapidly for T�0.4TJT and disappears at
TJT=780 K in a first order transition. These results have been
reinterpreted and fitted14 by a critical exponent �=0.16�1�, at
TJT when the temperature dependence of the electron-spin
resonant in La0.95Sr0.05MnO3 has been investigated.

Sánchez et al.15 showed by means of x-ray absorption
near edge structure and extended x-ray absorption fine struc-
ture at the Mn K edge that the structural transition originates
by the ordering of tetragonally distorted octahedra and they
analyzed the entropy content of the transition within the
framework of the three-state Potts model16–18 with nearest-
neighbor antiferrodistortive coupling. It is confirmed,19 by
using neutron diffraction data and a combined Rietveld and
high real space resolution atomic pair distribution function
analysis, that the nature of the JT transition around TJT is to
be orbital order-disorder and the intermediate structure sug-
gests the presence of local ordered clusters implying strong
nearest-neighbor JT antidistortive coupling.

Millis10 derived a classical model, which was based on
previous work by Kanamori,20 for the lattice distortions in
manganites. The model may be approximated either by an
antiferromagnetic xy model with a modest threefold aniso-
tropy or by a three-state Potts model with an antiferromag-
netic first-neighbor interaction and a weak second-neighbor
interaction. This differs from our model which deals only
with the nearest-neighbor interaction.

We study the orbital ordering appropriate for LaMnO3
obtained from our model and the JT distortion which occurs
above JT temperature in that phase. The model proposed
here for the disordered phase is an array of localized distor-
tions with no long range order. This differs from the model
of Zhou-Goodenough21 who postulated that dynamic JT ef-
fects occur in the high-temperature phase. Zhou and Good-
enough suggested that the orbital order-disorder transition at
TJT is to a dynamic JT stabilization at the eg electrons per-
sisting into the high-temperature O-orthorhombic phase, and
they proposed a vibronic mechanism to explain the electrical
resistivity and thermoelectric power above and below TJT,
respectively.

It is well known that the phenomenological models such
as pseudospin or Potts models are very useful to study order-
disorder transitions. In the LaMnO3 system, the MnO6 octa-

hedra are not independent as they share oxygen atoms with
their nearest neighbors. The standard three-state Potts model
alone does not have the correct orbital ordering for LaMnO3
as a possible ground state. In this paper, we describe a phe-
nomenological model that gives the correct ground state for
the orbital ordering and a good value for high-T entropy for
the LaMnO3 phase. The model is called the anisotropic Potts
model and has been presented earlier.22

In Sec. II, the anisotropic Potts model and its phase dia-
gram are presented and its application to LaMnO3 is in Sec.
III. The model is used to give understanding of the orbital
ordering just above TJT in Sec. IV. Finally, we conclude the
results in the last section.

II. METHODOLOGY

A. The model

We model the transition at TJT considering only the largest
distortions that leave the crystal tetragonal in the low tem-
perature phase. If the tetragonal axis is chosen along ẑ direc-
tion the orbital ordering is characterized by the vector Q
= �110�. There is a staggered order in the x-y plane and the
orbits are stacked ferromagnetically up the ẑ axis as shown in
Fig. 1�b�. However, in Fig. 1�b� we showed the ordering for
a pure JT system where the orbits shown were �x�= �3x2

−r2� and �y�= �3y2−r2�. These orbits are found from the eg

doublet for the case �= ± 2�
3 :

��� = cos
�

2
�3z2 − r2� + sin

�

2
�x2 − y2� . �1�

Experimentally14 it is found that if the tetragonal axis is
along ẑ direction, then, the staggered orbits are given by
�±�exp�, where �exp is closer to � /2 than 2� /3. We note that

� ±
�

2
� = cos

�

4
�3z2 − r2� + sin

�

4
�x2 − y2� . �2�

This gives, when �− �
2 � is used, 1

	6
�2.7x2−0.7y2−2z2� which

has its main lobe along x̂ direction. Similarly, using �+ �
2 �

gives a state, 1
	6

�2.7y2−0.7x2−2z2�, which has its main lobe
along ŷ direction. We use the JT states in our phenomeno-
logical model because these allow us to use the same states
below TJT for any of the three possible Q vectors �110�,
�101�, and �011�, and also above TJT. The model presents the
correct dimension of the order parameter.

There are six equivalent orderings that can occur. These
correspond to the three choices for the tetragonal axis and,
then, the phase �±1� of the order parameter. In the high-
temperature phase of the Potts model the orbits are in one of
states �=0 or �= ± 2�

3 . This differs from Zhou and
Goodenough21 who assumed that above TJT the orbit is ro-
tating, thus, all values of � are accessed dynamically. Be-
cause the orbital ordering in the transition metal oxides has
three anisotropic states it is natural to set up a three states
Potts model. The standard q-state Potts model16 consists of a
lattice of spins, which can take q different values from 1 to q,
and whose Hamiltonian is
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H = −
J

2 

�i,j�

N

�Si,Sj
, �3�

where Si=1,2 , . . . is one of the q states on site i, �Si,Sj
is the

Kronecker function which is equal to 1 when the states on
sites i and j are identical, Si=Sj, and is zero otherwise, �i , j�
means that the sum is over the nearest-neighbor pairs, J is
the exchange integral and N is the total number of sites in the
lattice. For q=2, this is equivalent to the Ising model. The
Potts model is, thus, a simple extension of the Ising model,
however, it has a much richer phase structure, which makes
it an important testing ground for new theories and algo-
rithms in the study of critical phenomena.17

We have presented22 a modified Potts model on a cubic
lattice where the interaction between two sites depends on
both the orbitals on these sites and also the directions of the
nearest-neighbor bond between them. We have found that
this general model describes the order seen in LaMnO3 for a
range of parameters. In LaMnO3, as we explained above, the
MnO6 octahedra are not independent as they share oxygen
atoms with their nearest neighbors �see Fig. 2�a��. This intro-
duces a constraint in the degrees of freedom for each
octahedron.15 If a Mn1-O bond expands, the oxygen sharing
O-Mn2 bond should contract and vice versa. According to
that, Mn orbital ordering is not isotropic. Namely, if
Mn-O-Mn was located along x̂ direction in the x-y plane, the
3d orbit of Mn in the expanded Mn1-O bond will be d3x3−r2,
x state, but in the contracted O-Mn2 bond it could be either
d3y3−r2, y state, or d3z3−r2, z state, and the same order may
exist in the next sublattice, as shown in Fig. 1�b�. The energy
of a pair of identical orbits is J1 only if the lattice vector
joining them is along the lobe of the orbit as shown in Fig.
2�b�. The interaction energy of two identical orbits separated
by a lattice vector that is not along the lobe is J2 as shown in

Fig. 2�c�. In three-state three-dimensions �3D� anisotropic
Potts model each site is occupied by one of the orbits x, y or
z and the energy is described by the following Hamiltonian:

Haniso = −
1

2 

�i,j�

N

JSi
��ij��Si,Sj

, �4�

where �ij =Ri−Rj is the direction of the nearest-neighbor
bond between two states.

There are two exchange interactions for the anisotropic
model. The “head to head” interaction J1 is defined by
Jx���=J1 for �= ± x̂a, Jy���=J1 for �= ± ŷa, and Jz���=J1 for
�= ± ẑa. The “side to side” interaction J2 is defined by
Jx���=J2 for �= ± ŷa or �= ± ẑa, Jy���=J2 for �= ± x̂a or �
= ± ẑa, and Jz���=J2 for �= ± x̂a or �= ± ŷa. Thus each site
has a coupling J2 to four neighbors and a coupling J1 to two
neighbors. This is shown in Figs. 2�b� and 2�c�. It is worth
mentioning that these types of interaction do not affect the
overall cubic symmetry of the lattice.

B. Monte Carlo simulations

This model has been studied using Monte Carlo �MC�
simulations on 3D finite lattices �with linear sizes L � 8, 10,
and 12� for a range of values of J1 and J2 with periodic
boundary conditions. All our simulations have made use of
the Metropolis algorithm and with averaging performed over
from 105 to 107 Monte Carlo steps per site. Results were
obtained by either cooling down from a high-temperature
random configuration as discussed by Banavar et al.23 or
heating up from the ground state. The results from the two
procedures agree.

Combination of the analytic method24 in the range TH
	T	
 and computational results in the range T	TH can be
used to obtain the high-T limit to get the starting point TH for
our simulations. The high-T expansion of the internal energy
as a function of temperature u�T� from the Hamiltonian in
Eq. �4� for the case �J1 � �J2 is

u�T� = u�
� −
1

2kBTH
� z�J1

2

4

 , �5�

where z� is the number of the similar nearest neighbors, z�
=2, and u�
�=

J1−2J2

3 . The value of u�T� can be written as
follows:

u�T� =
J1 − 2J2

3
−

A

TH
, �6�

where A is a constant. Figure 3 shows a plot of u�T� in units

of J1 against � �J1�. For small � �J1�, � �J1 � =
�J1�

kBTH
�0.03125,

then, TH�32 �J1 � /kB.
We use the simulations to evaluate the thermodynamic

quantities in the range 0	T	TH, and find the contribution
for T�TH analytically. A full phase diagram with six re-
gional phases in the J1-J2 plane has been obtained numeri-
cally and analytically,22 see Fig. 4.

III. SIMULATION FOR LaMnO3

The phase of interest in Fig. 4 is phase-5 where J1	0 so
that the head-to-head configuration is disfavored and J2�0,

FIG. 2. The exchange interactions used in the anisotropic Potts
model to give orbital ordering in LaMnO3, �a� if a Mn1-O bond
expands, the oxygen shared O-Mn2 bond should contract, �b� two
identical orbits in the same lattice vector, J1�0, disfavored, �c� two
identical orbits in different lattice vector, J2=0, favored.
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so that, side-to-side configuration is favored and 0	
J2

�J1�
	0.5. This has the correct low temperature pattern of orbital
ordering seen in LaMnO3, as shown in Fig. 1�b�. In this
phase we have an x ,y checkerboard pattern in the x-y plane
and this repeats itself so that the x and y states are in ordered
chains up the ẑ axis. The contribution to the energy comes
from these ferromagnetic chains so the ground state energy is
given by u�0�=−J2. We find that at high-T the internal en-
ergy is u�
�= 1

3 �J1−2J2� as expected from a random orbital
array in the Potts model. The stabilization energy of this
phase is obtained as

�u = u�
� − u�0� =
1

3
�J1 − J2� . �7�

The behavior of the specific heat CV�T / �J1 � � in the
LaMnO3 phase produced by this model �see Fig. 5�a�� shows

that it has a sharp peak corresponding to a first order transi-
tion in the range 0	J2 / �J1 � 	0.5 and in the range 0
	J2 / �J1 � 	0.25 there is a second, broader, peak. In the range
0.25	

J2

�J1� 	0.5 the two peaks merge. The first peak obtained
along the whole region of LaMnO3 phase is at the transition
from the orbital order to orbital disorder configuration occur-
ring above TJT. The second peak obtained along the region
0	J2 / �J1 � 	0.25 is caused by the short range order occur-
ring because of the large value of the head-to-head interac-
tion J1. We identify the short range order below the broad
peak with the short range order observed experimentally just
above TJT. In Sec. IV we compare this short range order to
the short range order at T=0 in the phase where

J2

�J1� =0.
We obtain the magnitudes of J1 and J2 as follows. The

experimental value of TJT is known, TJT�750 K, and from
Fig. 5, TJT=750=
J2, where 
 is a constant which is ob-
tained from the slope J2�0.12 eV. We find J1 from the con-
dition 0.05	

J2

�J1� 	0.25, which gives J1, 1.4 eV� �J1 �
�0.3 eV, which includes the value obtained by Millis et
al.,10 0.6 eV.

FIG. 3. Energy u per site versus � �J1� �where �=1/kBT� for the
anisotropic three-state 3D Potts model with L=8 in the low � limit.
The suitable starting point for our simulation is obtained, TH

�32 �J1 � /kB. For simplicity we show the case where J2=0.

FIG. 4. J1-J2 phase diagram22 of the orbital structures in a
simple cubic lattice for the general Hamiltonian �4�. The ground

state of LaMnO3 occurs when J1 is AF, J2 is FM and 0	
J2

�J1� 	0.5
which is phase-5 above.

FIG. 5. �a� Temperature dependence of specific heat CV per site
for the three-state 3D anisotropic Potts model at L=12, where
J2 / �J1 � =0.01,0.05, and 0.1 and J1	0. Tm is the temperature at the
minimum value of CV between the two peaks. �b� The dependence
of the transition temperature on J2 / �J1�.
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The specific heat curves have a minimum at a tempera-
ture, Tm, between the two peaks. We evaluate the entropy at
Tm by integrating the specific heat obtained from the simu-
lation above Tm and a temperature TH�J1 /kB where the en-
tropy is given by kB loge3:

kB loge3 − s�Tm� = �
Tm


 Cv�T�
T

dT . �8�

The values of s�Tm� obtained in this way are plotted in Fig. 6
as a function of J2 /J1.

Figure 6 shows that s�Tm� values are almost independent
of J2 / �J1� along the two-peak region. The average value
s�Tm�= �0.50±0.02�kB is in good agreement with the experi-
mental value obtained by Sánchez et al. who studied the
local structure of LaMnO3 across the JT transition at TJT
=750 K by means of x-ray absorption near edge structure
and extended x-ray absorption fine structure at the Mn K
edge. They obtained from the heat capacity measurements of
LaMnO3 that the change in entropy between low T and
above TJT, which is given as s�Tm� in our theory, is given by
�0.515±0.02�kB. Since the relevant Potts model has J2 / �J1�
small it is instructive to consider, in the next section, the
limiting case of J2=0.

The square of the order parameter of the orbital ordering
�2 in LaMnO3 is found as a function of the reduced tem-
perature T

TJT
from the simulation as shown in Fig. 7. We ob-

tain the same value of �2�T /TJT� from Monte Carlo simula-
tions independent of the direction of temperature change
taking account of the fact that there are three nontrivial in-
equivalent ordered phases ���2 corresponding to a choice of
Q.

For ordering characterized by Q= �110� we define a site
�n ,m , l� as belonging to the odd �even� sublattice if n+m is
an odd �even� integer. We define the probability px

�o� by de-
fining the total number of odd sites that are occupied by an x
orbital Nx

o:

px
�o� =

2Nx
o

L3 . �9�

This definition is extended to define py
o and pz

o and similarly
for the even sites px

e, py
e, and pz

e. The order parameter of the
orbital ordering for an x or y orbit in an odd site is

�x
�o� = px

�o� −
1

2
�py

�o� + pz
�o�� �10�

and

�y
�o� = py

�o� −
1

2
�pz

�o� + px
�o�� . �11�

Similarly, we are able to obtain the ordering on the even sites
�when m+n is even�, e.g.,

FIG. 6. The entropy for LaMnO3 phase versus J2 / �J1� above TJT,
where J2=0.0, 0.01, 0.05, and 0.1 and J1	0.

FIG. 7. �a� The square of the order parameter �2 of the orbital
ordering in LaMnO3 vs T /TJT at J2 / �J1 � =0.05,0.10,15, and 0.20
with L=12. �b� The experimental results for the square of the order
parameter of the orbital ordering as function of the reduced tem-
perature T /TJT �after Murakami et al. �Ref. 6��.
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�x
�e� = px

�e� −
1

2
�py

�e� + pz
�e�� , �12�

where px
�e�, py

�e�, and pz
�e� are the probability to find the even

site occupied by x ,y, or z orbit, respectively. The total order
parameter of the orbital ordering in LaMnO3 is

��110��T/TJT� =
��x + �y�

2
, �13�

where �x=�x
�o�−�x

�e� and �y =�y
�e�−�y

�o�. We do not have a
term for �z because it is not included in ��110��T /TJT� when
Q= �110�. When we start the simulation from high T, we find
that the system goes into one of the three equivalent Q or-
dered phases �110�, �101�, or �011� at the same value of TJT.

Figure 7�a� shows that the square of the order parameter
of orbital ordering in this model phase has an unusual behav-
ior. The orbital ordering is essentially perfect for T�0.4TJT.
It decreases through the range 0.4	

T
TJT

	1 faster than an
Ising model. Finally, it goes rapidly to zero at TJT because
there is phase transition at this temperature which appears to
be first order �but this is not proved rigorously because of the
finite size of the simulation�. The order parameter is plotted
as a function of the reduced temperature T /TJT in Fig. 7�a�. It
may be seen that the order parameter is remarkably insensi-
tive to the value of J2 /J1 provided that J2 /J1�1. Figure 7�b�
shows the experimental results from Murakami et al.6 There
is a qualitative agreement between the simple model pro-
posed here and the experiments. The size of the first order
jump at TJT is well reproduced by the Potts model. The ex-
perimental results have a strong concave region for 0.25
�

T
TJT

�0.9 which is reproduced qualitatively by the theory.
This is unusual behavior of an order parameter as in most
cases �for example, Ising model� the value of � dM

dT � increases
monotonically with temperature.

IV. PHASE FOR J2=0

In this section we show how a study of the phase obtained
for J2 / �J1 � =0 gives further understanding of the orbital or-
dering in LaMnO3 just above TJT. When we set J1 as AF and
put J2=0 �at J2=0 there is no phase transition� a phase which
has some physics of LaMnO3 phase above TJT is obtained.
Namely, there is no longer side-to side interaction but the
head-to-head configuration is still disfavored.

The energy varies from the high-T limit u�
�=J1 /3 to
zero at T=0, where there are no head-to-head configurations.
In comparison of the new model with AF Potts model, be-
cause the anisotropic case has fewer antiferromagnetic inter-
action we expect higher value for the ground state entropy
s�0� at T=0.

Therefore, the configuration of LaMnO3 above TJT is af-
fected by the short range order obtained by the head-to-head

interaction. It is known that the entropy of the three-state
Potts model is kB log3 at high-T and nearly

kB

2 loge2 at T=0.23

The anisotropic Potts model has an entropy at T=0 equal to
s�0�= �0.6±0.02�kB which is dramatically higher than s�Tm�
that for LaMnO3 phase above TJT through the range 0	

J2

�J1�
	0.25.

V. CONCLUSION

A modified model called the anisotropic Potts model has
been presented to study the orbital ordering and the local JT
distortion above JT temperature TJT in LaMnO3. The inter-
actions between the three possible orbits depended both on
the type of orbits and their relative direction on the lattice.
Suitable values of the exchange interaction have been chosen
to give the correct low temperature ground state for the or-
bital ordering phase in LaMnO3. The phase obtained from
these interaction values has a first order transition at the JT
temperature TJT.

Short range order was obtained above TJT for a wide ratio
of the exchange interactions 0	J2 / �J1 � 	0.25. The short
range order reduced the entropy from the value of three ran-
domly occupied orbitals kB loge3=1.098kB, to be
�0.5±0.02�kB which is in fair agreement with the experimen-
tal value obtained by Sánchez et al.15 When the side-to-side
interaction was put to zero J2=0, we obtained a phase that
does not order down to the lowest temperature. This phase
had an entropy at low temperature that was higher than that
obtained for LaMnO3 phase above TJT.

We obtained the order parameter of the orbital ordering
phases as a function of temperature in good agreement with
the published results. The square of the order parameter
�2�T /TJT� of the orbital ordering decreases faster for T
�0.4/TJT than an Ising model. At TJT it goes to zero discon-
tinuously in a first order transition.

The ratio of J2 /J1 necessary to give the LaMnO3 ground
state are 0	J2 / �J1 � �0.25 and within this range we find that
the results are almost independent of the exact value of
J2 / �J1�. In particular we find similar shapes of the curve �2

as a function of the reduced temperature T /TJT as shown in
Fig. 7 and also that entropy above TJT as shown in Fig. 6 is
also approximately constant. Furthermore, the range of val-
ues of J2 / �J1� required to give the observed ordering tem-
perature is consistent with those proposed from a micro-
scopic model. Thus we have shown that the temperature
dependence of the orbital ordering in LaMnO3 is represented
well by a phenomenological three state Potts model.
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